Fully Bayesian Computing

نویسندگان

  • Jouni Kerman
  • Andrew Gelman
چکیده

A fully Bayesian computing environment calls for the possibility of defining vector and array objects that may contain both random and deterministic quantities, and syntax rules that allow treating these objects much like any variables or numeric arrays. Working within the statistical package R, we introduce a new object-oriented framework based on a new random variable data type that is implicitly represented by simulations. We seek to be able to manipulate random variables and posterior simulation objects conveniently and transparently and provide a basis for further development of methods and functions that can access these objects directly. We illustrate the use of this new programming environment with several examples of Bayesian computing, including posterior predictive checking and the manipulation of posterior simulations. This new environment is fully Bayesian in that the posterior simulations can be handled directly as random variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss

This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

A BAYESIAN APPROACH TO COMPUTING MISSING REGRESSOR VALUES

In this article, Lindley's measure of average information is used to measure the information contained in incomplete observations on the vector of unknown regression coefficients [9]. This measure of information may be used to compute the missing regressor values.

متن کامل

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004